
Abstract- The paper presents a model of information flow
through the sensors to muscle system in regard to the control of
output. The model takes into account both the logical and
emotional action components. The emotional components
depend on the current needs of the organism. Actions resulting
in a positive change in the emotional analysis of the wor ld
activate the reward component that enables the action of logical
analysis of the situation. The pr incipal component of the system,
which provides input to most muscle fibers of human body, is
called lower motor neuron (LMN). The control of LMN is
modeled via a set of fuzzy rules. The principles of processing
seem applicable to ar tificial systems.
Keywords – Lower motor control, fuzzy control, fuzzy synapses

I. INTRODUCTION

Natural communication modeling - information coding and
transmission in human body is useful for technical
implementations as well in data communications as in other
related fields as robotics.

II . MUSCULAR CONTROL BY LOWER MOTOR NEURONS

The discharge activity of a motor unit is regulated by a
complex interaction between excitatory and inhibitory inputs
to the motor neuron. A major portion of the input comes from
supraspinal motor centers, directly or through interneurons.
Consequently, disorders of these centers can alter the motor
unit discharge pattern as seen in parkinsonism, chorea,
cerebellar disorders, and spasticity. In most cases, muscles
work in opposing pairs: one muscle opens or extends a joint
and the other closes or flexes it. This configuration is
necessitated by the fact that muscles exert force in one
direction only (i.e., contraction). Figure 1 demonstrates this
arrangement for a typical joint. This diagram also shows
some of the neural elements, which control the contraction of
these muscles. The principal neuron of this system, which
provides input to most muscle fibers, is called a lower motor
neuron and is labeled L in figure 1. This type of neuron and
the other neurons associated with it are located in the spinal
cord, where they function as the final processing stage before
output to the muscle. We shall refer to the lower motor
neuron and its associated elements as a LMN system. This
system is a good place to observe some of the principles of
the brain's motor organization. There are a great many LMN
systems in the spinal cord. Every muscle is composed of
thousands to milli ons of fibers and in the case of muscles
used for precise operations there may be an LMN system for
each individual fiber. In other cases, a single LMN system
may control many fibers of a muscle. Basicall y, an LMN
system must accept and reconcile commands from a
multitude of other systems, which desire control of the
muscle in question. It must attend to these commands

according to their priority, modify them on the basis of inputs
from both the kinesthetic and vestibular systems and on the
basis of status information from related LMN systems,
provide an appropriate output to the muscle, and make its
own status information available to other systems. In a
practical robotics application, there is no reason why a single
servo actuator and LMN processor for each joint would not
suffice. There are reasons why a single processor for many
joints is less practical, but before addressing this issue, let us
examine the LMN system to see what it accomplishes.

Figure 1. LMN circuitry has final control over muscular contractions,
operating as a low level, closed-loop, feed-back system

In figure 1, for clarity, only a single LMN driving each
muscle is shown. The degree of contraction of the muscle is
proportional to the output pulse frequency of the LMN: the
higher the frequency, the stronger the contraction. The circuit
shown on the right illustrates the simplest type of protective
spinal reflex: a pain receptor (nocioceptor) in the skin (P)
fires a neuron in the LMN system, which in turn fires the
LMN driving the flexor muscle.

This simple high-priority operation quickly removes the
limb from danger. Inhibitory cross connections between the
LMNs driving the two muscles insure that they do not act
antagonisticall y; one muscle relaxes as the other contracts.
This reciprocal, synergistic circuitry is generall y active in all
LMN operations, unless specificall y overridden.
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III. INFORMATION TRANSMISION THROUGH THE SENSORS TO
MUSCLE SYSTEM

The motor output system appears to be responsible for a
phenomenon called sensory neglect, in which animals simply
cease to attend behaviorally to events in their environment.
They will not even orient to novel stimuli. They must be force
fed to survive and generally seem unable to initiate a response
to any sensory stimulus. In terms of present model, this
would result from the fact that no external stimulus would be
able to serve as a means of disinhibiting the motor output
system.

The function of the limbic system involves behavioral
reactions of the individual toward the external environment as
a result of receiving information through all the sensory
modalities. In addition, the response may be influenced by the
internal environment, which may alter the excitability of the
nervous system (circulating levels of hormones, electrolytes,
availability of glucose etc). It seems to operate in preserving
the individual (feeding, fleeing or fighting) or the species
(reproduction). These responses are mediated through lower
centers of the diencephalon. Exactly how the emotional
perceptual apparatus is connected is not yet well understood,
but it appears that whatever the precise nature of its
operation, it will not be very different in principle from the
model described in this paper. In terms of behaviour, its
general functional operation is established. For potential
applications to robotics, the present model will adequately
summarize these facts. The general scheme is presented in
figure 2.

Figure 2. The general plan of information flow through the system in
regard to the control of output by the goal-directing system

In this diagram, the data flow from the receptors follows
two main routes. After preliminary analysis in the sensory
cortex, the data are available both to the limbic system for
motivation-relevant feature extraction processes and to the
other areas of the cortex for logical analysis. The information,
which is processed in the limbic system, can activate the
reward mechanism if (1) the information decodes to features

relevant to a drive state and (2) the limbic system elements,
which decode it, are gated onto the reward system bus by
activity of the appropriate drive state mechanism. When these
conditions are met, the behavioral strategies developed by
logical analysis of the sensory data can continue to be
translated into motor patterns by the basal ganglia and other
portions of the output system. There seems to be a large
component of the reward value of positive stimuli, which is
due to the rate of increase, or derivative, of the decoded
stimulus rather than its absolute value; this feature seems to
improve system response characteristics. In the case of escape
and avoidance behaviours, the reduction of activation of
certain stimulus elements serves to activate the reward
mechanism, possibly through release of inhibitory elements.

In the figure 2, the input is analyzed for the generation of
logical action schemes in the upper portion of the circuit,
while the lower portion evaluates the same inputs for their
emotional relevance. The emotional relevance depends on the
current needs of the organism as reflected in the activity of
the drive-state generators. Actions resulting in a positive
change in the emotional analysis of the world activate the
reward system, which permits the perpetuation of the action
generated by the logical analysis of the situation. In the figure
2, are not shown the connections that enable the logical
portion of the system to employ knowledge of the drive-state
of the system in generating goals for directing the logical
synthesis of action.

IV. NEURON WITH FUZZY SYNAPSES

The use of fuzzy and neuro-fuzzy prediction of time series
has recently become popular [1]. In this section, the use of a
specific type of neuron, named neuron with fuzzy synapses
(NFS) is shown. For a NFS having m inputs, x1-xm the
output y is computed as a sum of nonlinear functions:

 (1)

A function fi can be viewed as a synaptic transformation of
its input xi. Since every function f is implemented using a
particular class of neuro-fuzzy systems, we shall use the term
fuzzy synapse (FS) to designate these particular synapses.
The fuzzy synapse number i, implementing the NFS function
fi from (1), uses a number of N reference fuzzy sets, denoted
with Air, r = 1,2,...,N. Every fuzzy set Air is characterized by
its membership function (MF)  µAir : Ui→ [0,1].

The membership functions µAir have a triangular form,
like in Figure 3. For a certain value ui of the input xi, the truth
degree (TD) tir, of the proposition (xi is Air), is equal with the
value of MF µAir computed for ui, tir = µAir (ui). For every
crisp input value, a number of N truth degrees tir, r = 1,2,...,N,
are computed. But, as one can see only two consecutive TDs
are nonzero. Moreover, the sum of these TDs is 1, ti, k + ti,k+1

= 1, where k is the index of the first nonzero TD.
The fuzzy synapse has N rules, r = 1, 2, . . . , N, of the

form:

If xi is Air then P
irPriirriirriir tw...twtwy +++= 2

21 (2)
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where yir is the output of the rule r, wijr, j = 1, 2, . . . , P, are
adaptive weights of the rule r, tir is the truth degree of the rule
premise (xi is Air), tir = µAir (xi).

The function used for the rule output computation is a
polynomial of degree P, having the variable tir and the
coefficients wijr. For P = 1, (2) defines the fuzzy rule of
Yamakawa's neuron synapse. Despite its computational
simplicity, Yamakawa's neuron provides good prediction
performances for the tested series. For polynomials of degree
P > 1, there is an increase in the computational complexity of
the rule compared to the case P = l, but the improved
prediction performances justify the increase in computational
complexity [1].

We present the prediction performances of predictor
schemes based on neurons with fuzzy synapses of order P = 3
in tremor prediction applications. The rules of these particular
synapses are, for the third-order fuzzy synapse:
Rule no. r : If xi is Air then yir = wi1,r tir + wi2,r tir

2 + ...+ wi3,r tir
3

The output of the fuzzy synapse, yi = fi(xi), is computed as
the linear combination of the rule outputs yir

(3)

where yir is computed with (2), and N the number of the
synapse rules. The fuzzy synapse is a fuzzy system with a
crisp input xi and a crisp output yi, belonging to the category
of Sugeno fuzzy systems. The parameters of the fuzzy
synapse are the weights wijr from (2). By adapting these
weights, we can approximate a desired shape of the synapse
function fi. For every value belonging to the input domain Ui,
only two adjacent rules have nonzero truth degree, and the
sum of the truth degrees is equal to one. By denoting with tik
= µAik(xi) and ti,k+1 = µAi,k+1 (xi), these nonzero truth degrees,
we can rewrite (3) as yi = yik + yi,k+1. Thus, for triangular MFs,
the computation is drasticall y reduced. Since the computation
complexity does not depend on the number of fuzzy rules N,
one can use as many fuzzy reference sets as needed, for a
satisfactory fuzzy partitioning of the input domain Ui. We
denote a1 = xmin, a2,... , ar, . . . , aN = xmax, a1< a2 < . . < ar <
aN, the points in the input domain Ui where the triangular
MFs are unitary, µAir (ar) = 1, r = 1, 2,...,N. For Yamakawa's
neuron, one can show that between any two successive points
ar the synapse output yi, computed with (3), has a linear
variation with xi, that is yi = c0r + c1rxi, for xi [ar, ar + 1], r = 1,
2, . . . , N - 1. For a third-order synapse, the synapse output yi

has a third-order polynomial variation with the input xi, on the
intervals [ar, ar+1 ]. The nonlinear behavior of the higher
(second and third)-order synapses allows us better prediction
performances with respect to Yamakawa's neuron
performances [1], with the expense of increased
computational complexity.

The neuron output is the sum of all fuzzy synapses outputs.
Thus, one can write the neuron output y, for a particular input
vector (u1, u2,. . ., um), as:

(4)

Since the TDs tir are directly computed for a certain input
value (4) represents a linear weighted sum of dimension m x
N x P, having the weights wijr. Adapting these weights can
approximate the desired behavior of the neuron synapses.

V. FUZZY RULE BANK FOR MOTOR OUTPUTS (LMNS) HAVING

LOGICAL AND EMOTIONAL ACTION COMPONENT AS INPUT

VARIABLES

For each action component, the logical and emotional
outputs computed on a set of commonly real life situations
are used to derive the membership functions for those input
variables, by means of a simple fuzzy clustering method
based on a Euclidean distance. The clustering algorithm is
applied to obtain five clusters in the product input space,
which, when projected on each input dimension, form the
membership functions. Since, with fuzzy clustering
techniques, redundancy occurs when the clusters are
projected on the individual input variables, a simplification is
made by merging similar fuzzy sets and by removing sets
similar to the universal set (these fuzzy sets do not contribute
to the rule base) [2]. As a result, five fuzzy sets have been
obtained for the logical action variable, while only three
fuzzy sets are suff icient for the emotional variable. For the
output variable (muscle LMN control) three fuzzy sets,
labeled by Low (L), Medium (M) and High (H) have been
considered. Figures 3a, b and c show respectively the
membership function for the input and output variables.

Figure 3 Membership functions for Logical Actions, LA, (a), Emotional
Actions, EA, (b) and LMN control (c)

TABLE I
FUZZY RULE BANK FOR LMN MUSCLE

OUTPUT CONTROL

              LA

EA VL L M H VH

L L L L M H

M L L M M H

H L M M H L

The rules have been independently defined but since the
human sensorial system is not a perceptually uniform system,
the Euclidean metrics are not significant in terms of perceived
logical action an emotional inputs differences. Then the fuzzy
rules are tuned by means of an off-line learning phase, based
on the perceptive response of human operators and this
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response is used as an external reinforcement signal to adjust
the initial rule bases. The result of this process is that we can
use the same fuzzy rules for all input components of the same
sensorial type as shown in Table 1.

VI. THE FUZZY INTEGRAL AND THE MULTISENSORIAL FUSION

OPERATION

The main function of a fusion operator is the reduction of
the multidimensionality that the use of more than one sensor
introduced in a multisensorial pattern recognition system. The
selection of an appropriate fusion operator is the basic point
for the attainment of the aims mentioned in the introduction
of this section. The fuzzy integral, a non-linear fusion
operator, which was first introduced with this name by
Sugeno, [3], has showed its suitabil ity for the integration of
information. The use of the fuzzy integral in problems
Multi criteria Decision Making [4], and Pattern Recognition
[5], supports this aff irmation. The favorable properties of the
fuzzy integral regarding the qualitative aspect mentioned in
the introduction are achieved through the fuzzy measures.

Fuzzy measures extend the concept of classical additive
measures as probabilit y measures by relaxing their additivity
axiom. This kind of measures includes probabilit y,
possibili ty, belief and fuzzy measures. In the multisensorial
fusion approach the fuzzy measures are used to characterize
the weight of importance of the information sources. Not only
treated individually, but also considering the importance of
their possible coaliti ons. It is in this last aspect where the
formerly named types of fuzzy measures show their
differences. Intuitively, sub-additi ve fuzzy measures, as
possibili ty measures, are only capable of characterizing
redundancy between information sources. Super-additive
measures, as belief and fuzzy measures, are useful for
complementarity. Finally, independence of information
sources is characterized by probabilit y measures. This
concept, presented in [6] for multicriteria decision making,
can be extended to multi sensorial pattern recognition. Thus,
general fuzzy measures are the most appropriate for the
achievement of the qualitative gain formerly mentioned. By
not fixing the relationships between the coefficients of the
individual sources and those of their coalitions, general fuzzy
measures overcome the formal problem of considering only
one type of interaction between information sources
considered in other frameworks for multisensorial fusion, e.g.
Bayesian classificators or Dempster-Schafer theory of belief.
The fuzzy measures coefficients, also called fuzzy densities,
are determined using a priori knowledge of the relevance of
the information sources to be fused. The theoretical
disadvantage of the general fuzzy measures is the increment
of the number of coefficients to be calculated. Nevertheless,
while considering two or three information sources as in the
present framework this fact is not of significance.

There are basicall y two types of fuzzy integral, respectively
known as Sugeno's integral (Sµ):

(5)

and Choquet's integral (Cµ):

(6)

The enclosed sub-index in the former expressions indicates
a sorting in descending order operation prior to the
calculation of the integral itself. As an example, in the case of
three sources of information this ordering could be:

x1 ≥ x3 ≥ x2 results in x(1) = xl, x(2) = x3, x(3) = x2

This data-driven operation confers to the fuzzy integral the
property of varying the set of operating weights depending on
the current data value since the operating fuzzy density varies
in the form:

          (7)

In the here presented framework the selection of one or
another type of fuzzy integral in the realization of different
types of fusion is done heuristicall y case to case.

V. CONCLUSION

The flexible performance of biological systems is based,
among other reasons, on the parallel processing of different
kinds of information. Parallel processing is understood to
mean that different properties of the environment are
analyzed concurrently, and, to some degree, independently.
The goal of this parallel processing is the maximal
exploitation of the information prior to its fusion. The parallel
processing prior to the fusion of the embedded information is
also found in higher cortical areas. The proposed model
showed the validity of the independent processing of
information previous and during the information fusion stage.

The multisensorial fusion of information is one of the key
concepts for the intell igent exploitation of this powerful
sensor development in pattern recognition systems.
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